Chromoendoscopy or Narrow Band Imaging with Targeted biopsies Should be the Cancer Surveillance Endoscopy Procedure of Choice in Ulcerative Colitis

Bret A. Lashner, M.D.
Professor of Medicine
Director, Center for Inflammatory Bowel Disease
Cleveland Clinic
Low-Grade Dysplasia in Flat Mucosa

- **Cohort study** - 46 UC pts with LGD in flat mucosa
- 11 pts - colectomy for LGD (2 cancer, 1 HGD).
- 14/35 (40%) progressed to more advanced neoplasia during intensive surveillance
 - 7 pts CRC (2 stage I, 2 stage II, 3 stage III)
- Rate of progression - 53% at 5 yrs, 80% at 10 yrs
- **Conclusion** - Colectomy for LGD in flat mucosa

Low-Grade Dysplasia in Flat Mucosa

Figure 5. Kaplan-Meier curve comparing the cumulative progression to advanced neoplasia in patients with any fLGd (solid line), unifocal fLGd (dashed line), and multifocal fLGd (dotted line). Cross-hatches (+) indicate censoring of patients for no further follow-up or colectomy without evidence of progression. Vertical lines (|) represent progression events.
Polyps or DALMs in UC

- 24 pts with DALMs – 14 (58%) developed polyps/DALMs over 3.5 years (no cancers)
- 48 pts with DALMs – 23 (48%) developed polyps/DALMs over 4.1 years (no cancers)
- Neither study stratified by age

Innovations in the Management of Inflammatory Bowel Disease

DALMs v. Adenomas in UC

Newer Endoscopic Techniques to Improve Sensitivity of Detecting Dysplasia

- Chromoendoscopy
- Narrow Band Imaging
- Autofluorescence
- Confocal endomicroscopy
Chromoendoscopy

- Absorptive stains
 - Methylene blue (with a mucolytic)
 - Lugol’s solution

- Reactive stains
 - Congo red
 - Phenol red

- Contrast stains
 - Indigo carmine
Chromoendoscopy

- RCT - 165 patients with UC > 8 years - conventional surveillance v. chromoendoscopy

- 0.1% methylene blue staining prior to biopsy - taken up by epithelial cells, stable staining pattern, pit pattern visible in polypoid lesions

- Dysplasia - 38% v. 12% (P=0.003)

Findings

Table 5. Intraepithelial Neoplasias and Cancers

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>(P^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>84</td>
<td>81</td>
<td>—</td>
</tr>
<tr>
<td>Patients with INs</td>
<td>13</td>
<td>6</td>
<td>NS</td>
</tr>
<tr>
<td>Total no. of INs*</td>
<td>32</td>
<td>10</td>
<td>0.00315</td>
</tr>
<tr>
<td>Low-grade INs</td>
<td>24</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>High-grade INs</td>
<td>8</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Invasive cancers</td>
<td>3</td>
<td>1</td>
<td>NS</td>
</tr>
<tr>
<td>Polypoid INs</td>
<td>8</td>
<td>6</td>
<td>NS</td>
</tr>
<tr>
<td>INs in “flat mucosa”(^a)</td>
<td>24</td>
<td>4</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

*IN, intraepithelial neoplasia.
*Fisher exact test.

\(^a\)Group A - Chromoendoscopy
Innovations in the Management of Inflammatory Bowel Disease

Pit Patterns I & II

I

II

Same as surrounding epithelium

Stellate appearance
Low-grade Dysplasia
High-grade Dysplasia

Superficial Spreading Cancer
Chromoendoscopy for Mass Lesions

<table>
<thead>
<tr>
<th>Pit pattern III & IV</th>
<th>Dysplasia</th>
<th>No Dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit pattern I & II</td>
<td>2</td>
<td>80</td>
</tr>
</tbody>
</table>

Sensitivity 94%, Specificity 93%
Targeted v. Non-Targeted Bxs

- Tandem colonoscopies, 100 UC pts, routine bxs then indigo carmine-directed biopsies
- Non-targeted bxs – 0/2904 with dysplasia
- Targeted biopsies – 157 in the population
 - No chromo – 2/20 pts with dysplasia
 - Chromo – 5/55 additional pts with dysplasia
 - 7/114 additional lesions had dysplasia

Cleveland Clinic Experience

<table>
<thead>
<tr>
<th></th>
<th>UC</th>
<th>Crohn's Colitis</th>
<th>Indeterminate Colitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>27</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Mean age (range)</td>
<td>50 yrs (23-80)</td>
<td>50 yrs (33-65)</td>
<td>56 yrs (33-65)</td>
</tr>
<tr>
<td>Mean age with dysplasia (range)</td>
<td>46 yrs (25-66)</td>
<td>57 yrs (51-65)</td>
<td>-</td>
</tr>
<tr>
<td>Mean disease duration (range)</td>
<td>18 yrs (6-42)</td>
<td>17 yrs (9-29)</td>
<td>19 yrs (13-23)</td>
</tr>
<tr>
<td>Extensive Disease (%)</td>
<td>26 (96%)</td>
<td>-</td>
<td>3 (100%)</td>
</tr>
<tr>
<td>PSC (%)</td>
<td>2 (7%)</td>
<td>0</td>
<td>1 (33%)</td>
</tr>
<tr>
<td>Mean white light withdrawal time (range)</td>
<td>9 min (6-19)</td>
<td>-</td>
<td>6 min (6)</td>
</tr>
<tr>
<td>Mean chromo withdrawal time (range)</td>
<td>40 min (22-50)</td>
<td>-</td>
<td>43 min (36-50)</td>
</tr>
</tbody>
</table>

All Detected Lesions

- 54 visible lesions with conventional white light colonoscopy
 - 7 (13%) low-grade dysplasia
- 28 additional lesions with chromoendoscopy
 - 2 (7%) low grade dysplasia
- Random biopsies of normal appearing mucosa
 - 1/39 patients had flat low-grade dysplasia with no visible lesions
- No high-grade dysplasia or cancer
Polypoid Dysplastic Lesions

<table>
<thead>
<tr>
<th></th>
<th>UC Patients</th>
<th>Crohn’s Colitis Patients</th>
<th>Indeterminate Colitis Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>27</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Polypoid dysplasia</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>white light alone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional polypoid</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dysplasia chromo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total polypoid</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>dysplasia white light &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS - Not Significant
Flat Dysplastic Lesions

<table>
<thead>
<tr>
<th></th>
<th>UC Patients</th>
<th>Crohn’s Colitis Patients</th>
<th>Indeterminate Colitis Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>27</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Flat dysplasia white light alone</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flat dysplasia chromo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flat dysplasia random biopsy</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total flat dysplasia white light & chromo & random</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Mount Sinai Experience

- 102 patients with WLE (random biopsies) & methylene blue with targeted biopsies
- 17 pts with dysplasia (16 LGD, 1 HGD)
 - WLE – 9 pts detected with targeted bx
 - WLE – 3 pts detected with random bx
 - Chromo – 5 pts detected with targeted bx

Chromoendoscopy Conclusions

- Chromoendoscopy increases the sensitivity of detecting dysplastic lesions in ulcerative colitis pts by less than 2-fold.

- Chromoendoscopy with directed biopsies should be considered in all ulcerative colitis surveillance examinations, especially in pts at high risk for having dysplasia.

- Random biopsies of normal appearing mucosa may still be of benefit for dysplasia surveillance.
Narrow Band Imaging

- NBI employs a series of filters to project mostly blue light with shallow penetration into tissues.
- Vascular structures, like polyps and dysplasia, are darkly colored.
- Surrounding mucosa and residual stool are lightly colored.
- Convenient
Innovations in the Management of Inflammatory Bowel Disease

- 46 patients with ulcerative colitis, 5 dysplastic lesions were found in 276 areas of flat mucosa that were examined.
- “Tortuous” pattern - 4 cases of dysplasia
- “Villous” pattern – 1 case of dysplasia
- “Honeycomb-like” pattern – no dysplasia

Innovations in the Management of Inflammatory Bowel Disease

Tortuous Pattern - LGD
Innovations in the Management of Inflammatory Bowel Disease

Tortuous Pattern - HGD
Innovations in the Management of Inflammatory Bowel Disease

NBI

- 42 ulcerative colitis patients had surveillance colonoscopy with either NBI or WLE separated by 3 weeks.
- 11 patients with dysplasia were identified:
 - 4 pts - both WLE and NBI
 - 4 pts - NBI only
 - 3 pts - WLE only

Innovations in the Management of Inflammatory Bowel Disease

HGD

LGD
Autofluorescence

- Fluorophores – mitochondria, lysosomes, submucosal collagen – Red AF
- Chromophores – Hemoglobin – Purple AF
- Non-neoplastic mucosa – Green AF
Barrett’s Esophagus

- 20 pts with Barrett’s esophagus at high risk for dysplasia
- Autofluorescence - 28 dysplastic lesions
- NBI – 25 (89%) of those lesions detected
- WLE – 17 (61%) of those lesions detected
- Autofluorescence could be even more sensitive in detecting dysplastic lesions than NBI.

HGD in Barrett’s Esophagus
Sporadic Colonic Adenomas

- 107 Pts, 54 adenomas, 21 hyperplastic polyps

Differentiating adenomatous v. hyperplastic polyps with different Autofluorescence Intensity Ratio values

<table>
<thead>
<tr>
<th>AIR</th>
<th>% Sensitivity</th>
<th>% Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>>2.0</td>
<td>91</td>
<td>57</td>
</tr>
<tr>
<td>>2.3</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>>2.5</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>>3.0</td>
<td>69</td>
<td>95</td>
</tr>
</tbody>
</table>

Innovations in the Management of Inflammatory Bowel Disease

Adenomatous Polyps
Hyperplastic Polyps
Conclusions

- It is important to find dysplasia, if present, in ulcerative colitis pts having surveillance colonoscopy since the risk of progression is high.
- Chromoendoscopy, NBI, & AF with targeted biopsies all may increase the sensitivity of detecting dysplasia.
- Chromoendoscopy – widely available, inexpensive, data is promising, but random biopsies still needed
- NBI & AF – not widely available, little data