Clostridium difficile and Inflammatory Bowel Disease

David G. Binion, M.D.
Co-Director, Inflammatory Bowel Disease Center
Director, Translational Inflammatory Bowel Disease Research
Division of Gastroenterology, Hepatology and Nutrition
UPMC Presbyterian Hospital
Visiting Professor of Medicine
University of Pittsburgh School of Medicine
Pittsburgh, PA
Overview

I. Background – *C. difficile*

II. Impact of *C. difficile* on IBD

III. Diagnostic considerations *C. difficile*

IV. Treatment considerations
I. Clostridium difficile

- 1930’s - *Bacillus difficillis* first described as part of the normal flora of neonates.
- 1974 - *C. difficile* recognized as complication of Clindamycin use.
- 1978 - *C. difficile* identified as the cause of antibiotic-associated pseudomembranous colitis in humans.
- Clinical syndrome may range from watery diarrhea, abdominal pain, pseudo-membranous colitis, toxic megacolon, sepsis, colonic perforation and death.

C. difficile: Changing spectrum of clinical disease

- In the past: *C. difficile* linked to antibiotic use. Most cases treated successfully with metronidazole.
- Diminished therapeutic response to metronidazole (50% failure rate with initial course of treatment).

Epidemic strains of C. difficile

700 C. difficile related deaths in Quebec, Canada in one year (2003-4)

400 C. difficile related deaths annually in Quebec at the present time
BI/NAP1 Epidemic strain *C. difficile*

- Regional outbreaks - Pittsburgh, PA, Quebec, Canada and the mid-Atlantic and southeastern U.S.

- *C. difficile* in low risk populations – young individuals, peripartum women, community dwelling and in individuals with no exposure to antibiotics.

C. difficile Epidemic in U.S.

BI/NAP1 C. difficile in U.S. Nov. 2007 (n = 38)

BI/NAP1 C. difficile in U.S. Oct. 2008 IDSA Meetings

Current burden of *C. difficile* in U.S.

- October 2008 – BI/NAP1 has been isolated in all 50 states (IDSA).
- Total number of *C. difficile* cases annually in U.S. is >500,000.
- Total number of *C. difficile* related deaths annually in the U.S. is >15,000.
- Epidemic is predicted to worsen.
- Cause?
Where does the majority of antibiotic use occur in the U.S.?
Antibiotic use in food animal industry

- Poultry industry – antibiotic use to prevent diarrheal illness
- Corn fed beef require antibiotics to prevent bacterial overgrowth
BI/NAP1 Epidemic strain *C. difficile* and food animals

- Colonization and carriage with the epidemic strain *C. difficile* (B1 NAP1 strain) reported in cows.

- *C. difficile* has been isolated from retail ground meat purchased in Canada.

C. difficile infectious inoculum is 10 spores

Poutanen SM et al. CMAJ. July 6, 2004;171(1).
1) Antibiotic destroys normal bacterial flora
2) *C. difficile* grows and secretes toxins
3) Toxins inflame and ulcerate mucosa
4) Damaged mucosa secretes fluid causing *C. difficile*: Pathogenic mechanisms

Gut Lumen

Colonic Mucosa

Fluid secretion

- Normal flora
- *C. difficile*
- Antibiotic
- Toxin
- PMN

Poutanen SM et al. CMAJ. July 6, 2004;171(1).
II. Impact of *C. difficile* on IBD

Clostridium difficile
Clostridium difficile and IBD

- *C. difficile* and IBD present in identical fashion ranging from mild diarrhea to fulminant colitis.
- Early studies performed 2 decades ago indicated little overlap between *C. difficile* and IBD. It concluded “No need for routine screening for *C. difficile* in IBD population”.
- Recent studies: Increasing incidence and severity of *C. difficile* in IBD population
- *C. difficile* recently identified to have a significant negative impact on IBD morbidity.

Increasing Impact of *Clostridium difficile* on IBD

![Graph showing increasing number of patients affected by *Clostridium difficile* over years: 2001-2005.

Legend: P≤.01

Increasing Proportion of *Clostridium difficile* Patients With IBD

- **2000:** 4% C. diff patients
- **2001:** 7% C. diff patients
- **2002:** 16% C. diff patients

p <= 0.01

Number of Patients

- **Total C. diff patients**
- **IBD patients with C. diff**

Complications: *Clostridium difficile*
Infected Patients With IBD*

Hospitalizations

Colectomies

Endoscopic Appearance of *C. difficile*

Endoscopic appearance of *C. diff* in control patients

Endoscopic appearance of *C. diff* in patients with IBD

Ulcerative Colitis Crohn’s Disease

Histologic appearance *C. difficile*

Control patient

Classical pseudomembrane on histology—mucin, fibrin, necrotic debris

Crohn’s disease patient

Extensive cryptitis crypt abscesses in Crohn’s colitis pt with active *C. difficile*. No inflammatory pseudomembranes are identified.

Demographic Data: IBD Patients With *C. difficile*

- 91% Colonic IBD
- 61% Recent antibiotic exposure

Clostridium difficile in IBD: Morbidity and Mortality

IBD patients with *C. difficile* compared with IBD alone:
- Longer hospital stay
- Increased hospitalization costs
- Higher colectomy rates
- Increased mortality rate –
 - 118 IBD *C. difficile* deaths in NIS 2004
 - (>500 IBD *C. difficile* deaths in U.S. 2004)

C. difficile and IBD: Summary

Clostridium difficile and IBD

- Patients with colitis are at increased risk
- Maintenance immunosuppression correlated with infection (purine analogs, methotrexate)
- 10% of cases were new IBD presentations
- Contributes to flare in setting of new and longstanding disease in remission
- Recommend multiple stool samples for ELISA toxin A, B analysis. 54% of patients detected on first stool sample.
- No prompt response to metronidazole, consider vancomycin p.o.

III. Diagnostic considerations: C. difficile in IBD

- Laboratory
 - Leukocytosis
 - Hypoalbuminemia
- Radiographic

- Endoscopy - Pseudomembranes in 50% of patients with CDAD – rare in IBD patients.
Diagnosis of *Clostridium difficile*

- Cell culture toxin assay is the gold standard
 - excellent sensitivity
 - requires 24 – 48 hrs; labor intensive and expensive

- ELISA for toxin A and B
 - More rapid, less expensive and requires less expertise
 - Sensitivity varies from 79% to 97%.
Stool ELISA testing in IBD patients for *C. Difficile* toxins A and B

Special IBD scenarios with *C. difficile*

C. difficile in ileo-anal Pouchitis

- Two case reports
 - Chronic refractory pouchitis
 - Unresponsive to broad spectrum antibiotics
 - In both cases *C. difficile* developed while patients were on metronidazole therapy

C. difficile in segments of diverted bowel

- One case report of *C. difficile* in UC pt following subtotal colectomy with end-ileostomy.
- Treated successfully with 10 day course of metronidazole suppositories.

C. difficile enteritis: An early postoperative complication in IBD patients following colectomy

- Rare but associated with significant morbidity with mortality rates ranging from 60-83%

IV. Therapeutic considerations:
C. difficile in IBD
Approach for hospitalized IBD patients with Suspected/confirmed *C. difficile*

- *C. difficile* isolation and contact precautions.
- Daily stool testing for *C. difficile* (until positive sample). Possibility for in-hospital acquisition.
- Empiric oral vancomycin from day 1, alone or in combination with metronidazole (IV or po).
- Maintain oral diet!
- Decrease corticosteroid dosing – steroids blunt humoral immunity and IgG response to toxin A is necessary to resolve CDAD.
Oral vancomycin vs metronidazole for *C. difficile*

<table>
<thead>
<tr>
<th></th>
<th>VANCOMYCIN</th>
<th>METRONIDAZOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA-approved</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Colonic levels</td>
<td>> 500 mcg/ml</td>
<td>0 -10 mcg/ml</td>
</tr>
<tr>
<td>Effectivity</td>
<td>++++ Superior</td>
<td>++++ Inferior</td>
</tr>
<tr>
<td>Mild</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promotion of VRE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Failure rate</td>
<td>4%</td>
<td>13-16%*</td>
</tr>
<tr>
<td>Relapse rate</td>
<td>10-25%</td>
<td>10-25%</td>
</tr>
<tr>
<td>Side effects</td>
<td>Limited</td>
<td>Significant</td>
</tr>
<tr>
<td>Response (median time)</td>
<td>3 days</td>
<td>4.6 days</td>
</tr>
</tbody>
</table>

Cost
- **Vancomycin**: ++++
- **Metronidazole**: +

References:
Decreasing colectomy rate among hospitalized IBD patients with *C. difficile*

Number of infections and rate of hospitalization remained constant, but significant decrease in colectomy rate.

- High index of suspicion
- Use of oral vancomycin
- Decreased corticosteroid dosing

Prophylaxis

- Limit exposure to antibiotics
- MacFarland et al. Probiotics (Saccharomyces boulardii, Lactobacillus rhamnosus GG, and probiotic mixtures) effective for the prevention of CDAD (OR 0.59). data was strongest in S. boulardii
- Environmental decontamination requires 10% sodium hypochlorite solutions.
- Alcohol based hand gels are in-effective against spore-forming organisms. Soap and water dislodges spores from skin.

Refractory and recurrent *C. difficile*

Refractory C. difficile:
- Intravenous immunoglobulin was used in a series of 14 patients (200 mg/kg). 64% responded. One patient required 2nd dose.

Recurrent C. difficile:
- 27 out of 46 IBD patients (59%) had a recurrence. Of the recurring patients, one-quarter required colectomy.

C. difficile treatment regimens used:
1- Prolonged courses of vancomycin with or without pulse dosing (2 months)
2- Initial course of vancomycin followed by rifaximin maintenance course.
Summary and Conclusions - I

- *C. difficile* has doubled in North American Medical Centers in the past 5 years.
- IBD colitis patients have been affected at a rate.
- *C. difficile* in IBD is associated with high rates of hospitalization and colectomy and increased mortality.
- Antibiotic use may not be required to precipitate infection.
- Endoscopic and Histologic appearance is frequently not classical – pseudomembranes not always present.
- Multiple stool ELISA samples for toxin analysis are required to make a diagnosis.
Metronidazole failure rate is 50%; Oral vancomycin may be superior in hospitalized patients.

C. difficile enteritis may occur in post-colectomy patients and patients with ileoanal reconstruction.

C. difficile recurrence rates are high.

Hand washing with soap and water is essential to prevent nosocomial transmission.